Transition from GCSE to A-level Physics

"Time is relative, it worth depends only on what we do as it is passing"

Albert Einstein

Contents of this PowerPoint

口
Pages 3-5
\square Pages 6-8
\square Pages 9-12
\square Pages 13-15
\square Pages 16-18
\square Pages 19-20
\square Pages 21-25
Pages 26-30

- Pages 31-34

Why Physics?
Introduction to the course
Mathematical skills
Mathematical skills - test yourself
Calculations
Calculations - test yourself
Experimental skills
Experimental skills - test yourself
Extra reading and resources

Why Physics?

"Try not to become a man of success, but rather try to become a man of value."

Albert Einstein

Some careers that Physics can lead to

*Geophysicist/field seismologist

* Healthcare scientist, medical physics
* Higher education lecturer or secondary school teacher
* Radiation protection practitioner
* Research scientist (physical sciences)
* Scientific laboratory technician
* Meteorologist
* Engineering
* Product/process development scientist
* Systems developer
* Nanotechnology

Introduction to the course

"Life is like riding a bicycle. To keep your balance you must keep moving"

Albert Einstein

Introduction to the Course

The course is a two year course - OCR Physics A-level

It has three terminal examinations which are used to determine the final grade awarded.

Text books are supplied without extra cost, they are returned at the end of the course.

The modular nature of the course teaching

Module One - is the Practical Assessed Grade experiments, these lead to a Practical endorsement.
Module Two - Foundations of Physics - Is skills needed
Module Three - Forces and Motion
Module Four - Electrons, waves and photons
Module Five - Newtonian world and astrophysics
Module Six - Particles and Medical Physics

Mathematical skills Using numbers

"Not everything that can be counted, counts and not everything that counts can be counted"

Albert Einstein

Prefixes

Physics deals with quantities from the very large to the very small.

A prefix is something that goes in front of a unit and acts as a multiplier.

Symbol	Name	What it means		How to convert	
P	peta	10^{15}	1000000000000000		$\downarrow \times 1000$
T	tera	10^{12}	1000000000000	$\uparrow \div 1000$	$\downarrow \times 1000$
G	giga	10^{9}	1000000000	$\uparrow \div 1000$	$\downarrow \times 1000$
M	mega	10^{6}	1000000	$\uparrow \div 1000$	$\downarrow \times 1000$
k	kilo	10^{3}	1000	$\uparrow \div 1000$	$\downarrow \times 1000$
			1	$\uparrow \div 1000$	$\downarrow \times 1000$
m	milli	10^{-3}	0.001	$\uparrow \div 1000$	$\downarrow \times 1000$
μ	micro	10^{-6}	0.000001	$\uparrow \div 1000$	$\downarrow \times 1000$
n	nano	10^{-9}	0.000000001	$\uparrow \div 1000$	$\downarrow \times 1000$
p	pico	10^{-12}	0.000000000001	$\uparrow \div 1000$	$\downarrow \times 1000$
f	femto	10^{-15}	0.00000000000000 1	$\uparrow \div 1000$	

Using Index notation

In GCSE it is acceptable to give units in this form m / s

However A-level uses index notation so:
m / s becomes $\mathrm{m} \mathrm{s}^{-1}$ and $\mathrm{m} / \mathrm{s}^{2}$ becomes $\mathrm{m} \mathrm{s}^{-2}$

A space is left between different units but no space between a prefix and units.

Significant figures

1. All non-zero numbers ARE significant.
2. Zeros between two non-zero digits ARE significant.
3. Leading zeros are NOT significant. They're nothing more than "place holders."
4. Trailing zeros when a decimal is shown ARE significant.
5. Trailing zeros in a whole number with no decimal shown are NOT significant.

s	ms	$\boldsymbol{\mu s}$	ns	ps
0.00045	0.45	450	450000 or 450×10^{3}	450×10^{6}
0.000000789				
0.00000000064				

Convert your figures into the prefixes required

What do the units and prefixes above mean?

Value	Sig Figs	Value	Sig Figs
Test your knowledge			
1066		1800.45	
82.42		2.483×10^{4}	
750000		0.0006	
310		5906.4291	
3.10×10^{4}		200000	
3.1×10^{2}		12.711	

How many significant figures?

Calculations

"It's not that I'm smart, I just stay with problems for longer."

Albert Einstein

Rearranging equations

The most important rule for algebra is: If you do something to one side of an equation, you have to do it to the other side too.
An equation basically says "the stuff on the left hand side of the equals sign has the same value as the stuff on the right hand side of it," like a balanced set of scales with equal weights on both sides.
If you want to keep everything equal, anything you do needs to be done to both sides.
E.G V = I R, what would I be?

$$
V=I R \quad \text { Therefore } \quad \frac{V}{R}=\frac{I R}{R} \quad \frac{V}{R}=\frac{I R}{R} \quad \frac{V}{R}=I \quad \text { or } \quad I=\frac{V}{R}
$$

Gradients

Gradients are a useful tool that show how fast or slow quantities change

To calculate the gradient, pick any two points on the line as far away as possible and draw a large triangle between them.

The gradient is given by:

$$
\text { gradient }=\frac{\text { diffference in y values }}{\text { difference in x values }}
$$

Remember - if the line slopes up, the gradient should be positive; if the line slopes down, then the gradient should be negative.

	Equation	Rearrange equation	
Test your knowledge	$\varepsilon=V+I r$	r	
	$\rho=\frac{R A}{l}$	A	
	$E_{P}=m g h$	m	
	$v^{2}=u^{2}+2 a s$	u	
	$T=2 \pi \sqrt{\frac{m}{k}}$	k	

Rearrange the equations above

How could this gradient be best described?

Experimental skills and terms

"It is theory that decides what can be observed."

Albert Einstein

Tabulation

Independent variable	Dependent variable	Unit
,		\checkmark
Time / s	Distance travelled/cm	
0	0	
60	46	
120	70	
180	85	
240	94	
300	96	
360	96	
420	96	

Key Points

Headings should list the variable tested, or the equation being performed and the unit. The unit should NOT be repeated with the values

The left hand column would normally record the independent values and the other columns those measured or calculated.

Repeats and average columns should ALL contain both the variable and unit in the heading as shown below.

Values, these should be written to the level of precision allowed by the equipment used.

A / used instead of brackets	Time \rightarrow / s	Distance travelled / cm			
		Attempt 1	Attempt 2	Attempt 3	Average
	0	0	0	0	0

Graphs skills

Dependent
Variable

Independent Variable

When drawing lines of best fit, draw a smooth straight or curved line that passes through the majority of the points. If you can, try to have an even number of points above and below the line if it can't go through all points.

Dependent
Variable

Independent Variable

Describing graphs

Usually the x axis plots the independent variable and the y axis plots the dependent variable.

When describing the trend, use the phrase....
"As ' X ' increases, ' Y^{\prime} increases/decreases in a linear/non-linear fashion."

Substitute the quantities into X and Y, and choose either of the two options to describe the graph.

"Between A and B, as time increases, distance increases in a linear fashion."

Experimental Key terms

Accuracy is the proximity of measurement results to the true value

Precision is both the ability of a measurement to be consistently reproduced and the number of significant digits to which a value has been reliably measured.

Reproducible - A measurement is reproducible if the investigation is repeated by another person, or by using different equipment or techniques, and the same results are obtained.

Repeatable - A measurement is repeatable if the original experimenter repeats the investigation using same method and equipment and obtains the same result.

Variable is any factor that can be controlled, changed, or measured in an experiment.

| Month | Angle of tilt | | | Average |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tef the
 year
 knowledge | 20 | 30 | 40 | |
| Feb | 460 | 500 | 480 | |
| Apr | 600 | 620 | 610 | |
| Jun | 710 | 720 | 680 | |
| Aug | 640 | 660.00 | 640 | |
| Oct | 480 | 520 | 500 | |
| Dec | 400 | 440 | 420 | |

What is wrong with the table shown? (Four to find)

Draw lines of best fit for both of the graphs shown above

Draw lines of best fit for both of the graphs shown above

What is it about a Hooke's Law graph that makes the trend on the graph more difficult to describe?

The same pattern of results are obtained by another person

the ability of a measurement to be
consistently reproduced

the proximity of measurement
results to the true value

Mix and match the key terms with their definitions

Extra reading and resources

"I love to travel, I hate to arrive."

Albert Einstein

Books and Content relevant to A-level Physics

Head Start to A-level Physics (CGP A-Level Physics)

Essential Maths Skills for AS/A Level Physics
ISBN 978-1471863431
A Student's Guide to Waves by Daniel Fleisch
ISBN 978-1107643260
A Student's Guide to Newton's Laws of Motion by Sanjoy Mahajan

Quantum Physics For Beginners by Michael Rutherford

Helpful websites

Institute of Physics
http://www.iop.org/tailored/students/

The student room
https://www.thestudentroom.co.uk/

New Scientist
https://www.newscientist.com/

Relevant books to read

Books for enjoyment

A short history of nearly everything by Bill Bryson, ISBN 978178461859

Why does E=mc²? By Professor Brian Cox and Jeff Forshaw
ISBN 9780306817588

What If?: Serious Scientific Answers to Absurd Hypothetical by Randall Munroe
ISBN 9781848549593

