Transition from GCSE to A-level Physics

"Time is relative, it worth depends only on what we do as it is passing"

Contents of this PowerPoint

Pages 3-5 Why Physics? Introduction to the course **D** Pages 6-8 **Pages 9-12** Mathematical skills **D** Pages 13-15 Mathematical skills – test yourself **D** Pages 16-18 Calculations **Pages 19-20** Calculations – test yourself **Pages 21-25 Experimental skills Pages 26-30** Experimental skills – test yourself **D** Pages 31-34 Extra reading and resources

Why Physics?

"Try not to become a man of success, but rather try to become a man of value."

Some careers that Physics can lead to

- Geophysicist/field seismologist
- Healthcare scientist, medical physics
- Higher education lecturer or secondary school teacher
- Radiation protection practitioner
- Research scientist (physical sciences)
- Scientific laboratory technician
- Meteorologist
- Engineering
- Product/process development scientist
- Systems developer
- Nanotechnology

Introduction to the course

"Life is like riding a bicycle. To keep your balance you must keep moving"

Introduction to the Course

The course is a two year course – OCR Physics A-level

It has three terminal examinations which are used to determine the final grade awarded.

Text books are supplied without extra cost, they are returned at the end of the course.

The modular nature of the course teaching

Module One - is the Practical Assessed Grade experiments, these lead to a Practical endorsement.

Module Two – Foundations of Physics – Is skills needed

Module Three – Forces and Motion

Module Four – Electrons, waves and photons

Module Five – Newtonian world and astrophysics

Module Six – Particles and Medical Physics

Mathematical skills – Using numbers

"Not everything that can be counted, counts and not everything that counts can be counted"

Prefixes

Physics deals with quantities from the very large to the very small.

A prefix is something that goes in front of a unit and acts as a multiplier.

Symbol	Name	What it means		How to convert	
Р	peta	10 ¹⁵	10000000000000		↓ ×1000
Т	tera	10 ¹²	10000000000	↑ ÷ 1000	↓ x1000
G	giga	10 ⁹	100000000	↑ ÷ 1000	↓ x1000
М	mega	10 ⁶	1000000	个 ÷ 1000	↓ x1000
k	kilo	10 ³	1000	↑ ÷ 1000	↓ x1000
			1	↑ ÷ 1000	↓ x1000
m	milli	10 ⁻³	0.001	↑ ÷ 1000	↓ x1000
μ	micro	10 ⁻⁶	0.000001	↑ ÷ 1000	↓ x1000
n	nano	10 ⁻⁹	0.00000001	↑ ÷ 1000	↓ x1000
р	pico	10 ⁻¹²	0.00000000001	↑ ÷ 1000	↓ x1000
f	femto	10 ⁻¹⁵	0.0000000000000000000000000000000000000	↑ ÷ 1000	

Using Index notation

In GCSE it is acceptable to give units in this form m/s

However A-level uses index notation so:

m/s becomes m s⁻¹ and m/s² becomes m s⁻²

A space is left between different units but no space between a prefix and units.

Significant figures

- 1. All non-zero numbers **ARE** significant.
- 2. Zeros between two non-zero digits **ARE** significant.
- 3. Leading zeros are **NOT** significant. They're nothing more than "place holders."
- 4. Trailing zeros when a decimal is shown **ARE** significant.
- 5. Trailing zeros in a whole number with no decimal shown are **NOT** significant.

Test your	
knowledge	

S	ms	μs	ns	ps
0.00045	0.45	450	450 000 or 450 x10 ³	450 x 10 ⁶
0.00000789				
0.000 000 000 64				

Convert your figures into the prefixes required

What do the units and prefixes above mean?

Value	Sig Figs	Value	Sig Figs
1066		1800.45	
82.42		2.483×10^4	
750000		0.0006	
310		5906.4291	
3.10×10^4		200000	
3.1×10^2		12.711	

Test your

knowledge

How many significant figures?

Calculations

"It's not that I'm smart, I just stay with problems for longer."

Rearranging equations

The most important rule for algebra is: If you do something to one side of an equation, you have to do it to the other side too.

An equation basically says "the stuff on the left hand side of the equals sign has the same value as the stuff on the right hand side of it," like a balanced set of scales with equal weights on both sides.

If you want to keep everything equal, anything you do needs to be done to **both** sides.

E.G V = I R, what would I be?

V = I R Therefore
$$\frac{V}{R} = \frac{I R}{R}$$
 $\frac{V}{R} = \frac{I R}{R}$ $\frac{V}{R} = I Or I = \frac{V}{R}$

R / R cancels R

Gradients

Gradients are a useful tool that show how fast or slow quantities change

To calculate the gradient, pick any two points on the line as far away as possible and draw a large triangle between them.

The gradient is given by:

 $gradient = \frac{difference in y values}{difference in x values}$

Remember – if the line slopes up, the gradient should be positive; if the line slopes down, then the gradient should be negative.

	Equation	Rearrange equation	
	$\varepsilon = V + Ir$	r	
Test your knowledge	$\rho = \frac{RA}{l}$	A	
	$E_P = mgh$	m	
	$v^2 = u^2 + 2as$	u	
	$T = 2\pi \sqrt{\frac{m}{k}}$	k	

Rearrange the equations above

How could this gradient be best described?

Test your

knowledge

Experimental skills and terms

"It is theory that decides what can be observed."

Tabulation

Independentvariable		Dependent variable		Unit
Time / s		Distanc	e travelled /	cm
0			0	
60	60 120 180		46	
120			70	
180			85	
240			94	
300	300		96	
360			96	
420			96	

Key Points

Headings should list the variable tested, or the equation being performed and the unit. The unit should NOT be repeated with the values

The left hand column would normally record the independent values and the other columns those measured or calculated.

Repeats and average columns should ALL contain both the variable and unit in the heading as shown below.

Values, these should be written to the level of precision allowed by the equipment used.

Graphs skills

Independent Variable

When drawing lines of best fit, draw a *smooth* straight or curved line that passes through the majority of the points. If you can, try to have an even number of points above and below the line if it can't go through all points.

Independent Variable

Describing graphs

Usually the x axis plots the independent variable and the y axis plots the dependent variable.

When describing the trend, use the phrase....

"As 'X' increases, 'Y' *increases/decreases* in a *linear/non-linear* fashion."

Substitute the quantities into X and Y, and choose either of the two options to describe the graph.

"Between A and B, as time increases, distance increases in a linear fashion."

Experimental Key terms

Accuracy is the proximity of measurement results to the true value

Precision is both the ability of a measurement to be consistently reproduced and the number of significant digits to which a value has been reliably measured.

Reproducible - A measurement is reproducible if the investigation is repeated by another person, or by using different equipment or techniques, and the same results are obtained.

Repeatable - A measurement is repeatable if the original experimenter repeats the investigation using same method and equipment and obtains the same result.

Variable is any factor that can be controlled, changed, or measured in an experiment.

Month		Average		
of the	20	30	40	
year				
Feb	460	500	480	
Apr	600	620	610	
Jun	710	720	680	
Aug	640	660.00	640	
Oct	480	520	500	
Dec	400	440	420	

What is wrong with the table shown? (Four to find)

Test your knowledge

Draw lines of best fit for both of the graphs shown above

Draw lines of best fit for both of the graphs shown above

What is it about a Hooke's Law graph that makes the trend on the graph more difficult to describe?

Extra reading and resources

"I love to travel, I hate to arrive."

Books and Content relevant to A-level Physics

Head Start to A-level Physics (CGP A-Level Physics)

Essential Maths Skills for AS/A Level Physics

ISBN 978-1471863431

A Student's Guide to Waves by Daniel Fleisch

ISBN 978-1107643260

A Student's Guide to Newton's Laws of Motion by Sanjoy Mahajan

Quantum Physics For Beginners by Michael Rutherford

Helpful websites

Institute of Physics <u>http://www.iop.org/tailored/students/</u>

The student room https://www.thestudentroom.co.uk/

New Scientist

https://www.newscientist.com/

Relevant books to read

Books for enjoyment

A short history of nearly everything by Bill Bryson, ISBN 978178461859

Why does E=mc²? By Professor Brian Cox and Jeff Forshaw ISBN 9780306817588

What If?: Serious Scientific Answers to Absurd Hypothetical by Randall Munroe

ISBN 9781848549593